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HOW FAR CAN YOUR SKILLS TAKE YOU?
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Understanding skill demand changes
due to occupational shifts and the
transferability of workers across occupations
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90M+ Europe

" "14M+ Canada

36M+ China

6M+ Turkey ‘ 1M+ Japan
45M+ |India ' _
1M+ Israel 1M+ Republic of Korea
1M+ Hong Kong

M+ Morocco‘
2M+ Egypt ‘
A ‘ 2M+ Saudi Arabia ‘ 5M+ Philippines
6M+ Colombia ’ ‘ e Smgapore.
‘ 9M+indonesia

1M+ Kenya 3M+ Malasya
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143M+ United States
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30M+ Brazil

4M+ Chile

6M+ Argentina



WHAT'S UNIQUE ABOUT LINKEDIN'S DATA?
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SOFTWARE DEVELOPER IS THE
FAST ROWANG OCCUPATION
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PEOPLE-CENTRIC ROLES ARE ON THE RISE

Software Developer
Consultant

Owner / Founder
Business Strategist
Recruiter

Social Media Specialist

Marketing Specialist Decline
z - Index
Food Service Professional
Business Develpment Specialist 04
0.3
Human Resources Specialist 0.2

Legal Administrative Professional 0.1
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KINGDOM |  STATES AFRICA

Most emerging occupations across countries



ADMINISTRATIVE ROLES AND TECH SUPPORT
ARE DECLINING

Information Technology Consultant
Administrative Employee

Inf. Tecnology Support Specialist
Accountant

Customer Service Specialist
Projetc Manager

Corporate Finance Specialist

Inf. Technology System Administrator

Technician Decline
: - Index
Mechanic and Maintenance Tradesperson
0.4

Logistic Specialist
0.3

Engineer - 0.2
0.1
Salesperson -
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Most emerging occupations across countries



DIGITAL TOOLS
AND ADVANCED
DIGITAL SKILLS

ARE IN HIGH
DEMAND
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BUT BASIC DIGITAL SKILLS AND MANAGEMENT SKILLS
ARE ON THE DECLINE

Project Management

Business Management

Digital Literacy
Administrative Assistance
Leadership

Manufacturing Operations

People Management

Negotiation
Foreign Languages Decline
Procurement Index
Management Accounting 2_:
Retail Sales - o:z

Technical Support 0.1
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WE CAN CREATE A GPS FOR THE LABOR MARKET




A NETWORK OF OCCUPATIONS CONNECTED
BY THE SKILLS THEY SHARE

Argentina United States
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FIGURE 8. EMERGING AND DECLINING SHILLS (2015-2017)
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Technical Appendix




Table 1. Definitions and Concepts used in the report

Concept

Definltlon

Occupation

skill

Skill Cluster

Hiring

Members include their job history (positions and roles) as unstructured text. Then, machine learning algorithms
categorize these into occupations. LinkedIn has different occupation taxonomies with different levels of granularity.
This analysis used a taxonomy of 283 occupations.

There are three ways to capture skills from LinkedIn member profiles: implicit, inferred, and explicit. Explicit are
the skills members confirm or write into their profile. Implicit skills are ones that are extracted from other text in
member profiles, but not entered in the skills section (e.q. someone writes "l use Microsoft Office to write legal
documents” in the description box for their role). Inferred skills are ones that are inferred based on information
in their profile but are not included in the other 2 categories. The analysis in this paper considered implicit and
explicit skills. It did not use inferred skills. It also did not consider "endorsements” of skills by other members.

LinkedIn has a set of 249 skill clusters. To develop these clusters, team of taxonomists generated a set of cluster
names to ensure representation across all industries, functions, and academic/vocational training based on common
taxonomies such as 1SIC, NAICS O*NET, CIP code and ICBF. An MLP model that uses embedding technigues was run
to assign which cluster is 'closest’ to each skill. The distance is defined using an embedding space that is developed
using co-occurrence of skills. For example, 'C++', 'Java', 'Python', may often appear together on the profiles of
software developers and thus they have a close distance to each other. Using the distance measure, 'C++', "Java',
'"Python' could be grouped into the cluster of 'Development Tools',

We looked at member profiles and for each position took the start date as the yvear of "hire”. If a member changes
positions but remains with the same employer, this data is not counted as a hire.



Calculating emerging and declining

OCCUP ations
* For each country and year, hiring for
each occupation is measured as a
R — - proportion of total hiring for each
= ——=— =  Countywem
- —— —— + \Weestimated a hiring time trend for

each occupation-country combination
in the period 2008- 2017.

—  _————— ——— + \Weusedalinear model to regress the
hiring rate on a year variable to
identify the linear trend of hiring to
smooth yearly variation.

* We then ranked all occupations
= s according to their hiring trends to pick
the top ten emerging and declining
occupations according to this metric.




Calculating changes in skill demand

Nigt = Nye (1)
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e Step (1) is an identity. In step (2) we multiply and

divide by the number of workers in occupation i. In
step (3) we add across all occupations on both
sides of the equation. In step (4) use the definition
for the share of workers in occupation i who have
skill k. In step (5) we use the fact that adding across
occ#pﬁtlilol?s, provides the total number of workers
with skill k.

In step (6) we fix the moment at which the share of
workers in occupation i with skill k is measured and
express equation (5) as the hiring rate within that
period. The hiring rate is defined as the change in
employment in an occupation (or a given skil%) as a
fraction of the total change in employments within
that period. Finally, in step (7) we express the
change in the hiring rates as the total (discrete)
differential. The changes are computed between
the periods Tt and t1. The first part is the between
component and the second is the within
component.



Constructing the occupation-skills network
graphs

We estimate the importance of a skill in
an occupation by measuring how much
hiﬁher is the share of Linkedln members
who possess that skill in that given
occupation relative to the average share
of members who possess that skill in each
country.

Based on these measures, we
characterize each occupation by a set of
skill importance indexes and estimate
proximity between occupations by
calculating the correlation coefficients for
every pair of occupations in each country.

 We only kept the correlation coefficients

which were statistically significant. The
result is a matrix relating every
occupation to every other in each of the
10 countries in our sample. We then
treated correlations as  distance
measures to be represented in a network
graph.

Higher values of correlations represent
shorter distances while lower correlations
values represent longer ones. The nodes
in each graph are the occupations, while
the edges represent the correlation
between occupations. For visualization
purposes we kept correlations that had a
value of at least 0.5.



Network statistics

Country Argentina Australla Brazil Chile France Indla Mexlco i?::at:: UK us
Occupations (Nodes) 166 229 206 170 228 226 192 196 244 263
Connections (Edges) 267 449 387 347 378 446 413 338 575 960
Connections per Occupation 1.6 2.0 1.9 2.0 1.7 2.0 22 1.7 2.4 2.7

Table 2. Metwork statistics

Mote: All networks graphs are undirected, constructed using statistically significant pairwise correlations abowve 0.5 between all occupations, Edge distance
represents the value of each pairwise correlation.,

In Table 2, The United States has, on average, 3.7 related occupations
for every occupation while Argentina has 1.6, indicating that the degree
of similarity between occupations appears to be higher in the former.



Policy Implications and Recommendations

* New sources of large-scale data provide timely and granular labor market
information that is highly relevant for policy.

* As a final reflection, these results also show the desirability and usefulness
of investing in the infrastructure to make new sources of data
interopera%le, shared across government agencies, and complementary to
traditional sources of information.

* Modern labor market information systems that emphasize integration and
interoperability are necessary to facilitate the sharing and dissemination of
different sources and tﬁpes of data to generate a more complete and
timely picture of the labor market.

* This intelligence can be shared with a range of stakeholders, including
parents and students, workers, employers, policymakers, and education
and training providers.



