Introduction to Climate Change Mitigation and Its Importance

Workshop organized by ILO and Waste Concern Consultants

Ijaz Hossain
Chemical Engineering Department, BUET
Email: ijaz@che.buet.ac.bd
What is Climate Change Mitigation?

- Greenhouse gases (CO2, CH4, N2O) accumulation in upper atmosphere causes global warming
- CO2 is emitted by **Industry, Transport and Power Generation** due to combustion of fossil fuels (Oil, Natural Gas and Coal)
- **Landfill** is main cause of CH4 emission (anaerobic digestion)
- CH4 emitted from **Rice Production and Enteric Fermentation**; N2O comes from **Nitrogenous Fertilizers**
- Deforestation causes CO2 emission; Forests are CO2 sinks
- Reducing GHG is **Climate Change Mitigation** (Green Jobs)
Green Jobs and GHG Mitigation

- Energy Efficiency (buildings, industry,)
- Electric Power Grid (T&D loss, smart grid)
- Renewables (solar, wind, hydro, biomass)
- Public Transport
- Water (rainwater harvesting; efficient use)
GoB has formulated the BCCSAP (Bangladesh Climate Change Strategy and Action Plan)

Approved the Renewable Energy Policy (5% by 2015 and 10% by 2020)

Strongly promoting Solar PV (mandatory 1-3% to get new power connection)

Programs in afforestation and reforestation
This presentation mainly deals with energy efficiency and renewables GHG mitigation options for Bangladesh.

The material presented is derived from the study report of the Second National Communication (SNC).

The SNC will be submitted soon to UNFCCC, and will be available in their website.
GHG Emissions in Thousand Tones CO₂ Equivalent

- ALGAS
- INC
- 2001
- 2005

INC = Initial National Communication
SNC = Second National Communication
Relative contributions to CO₂ emission 2005

- Energy Industries: 31%
- Mfg & Construction: 27%
- Transport: 13%
- Residential: 11%
- Fertilizer: 9%
- Agriculture: 5%
- Non-Spec Sector: 3%
- Commercial: 1%
CO₂ Emission by Energy Sub-Sectors
2005

Emission from Power Generation Distributed to Consuming Sectors

- Agricultural: 12%
- Commercial: 4%
- Residential: 25%
- Transport: 14%
- Mfg & Construction: 45%
CO₂ Emission by Manufacturing & Construction Sub-Sector

2005

- Brick (Coal) 36%
- Textile & Leather 22%
- Fertilizer 25%
- Non-specified Industry 9%
- Non-Metallic Minerals 2%
- Iron & Steel 2%
- Food, Beverages & Tobacco 2%
- Chemicals 1%
- Paper, Machinery, Non-Ferrous Metals 1%
Mitigation Sectors/Options Considered for SNC

- Electricity generation and supply
- Transport – rail and water
- Energy Intensive Industries – Fertilizer, Scrap Steel Melting, Re-rolling, Brick, Ceramic, Cement, Sugar
- Selected options in the Residential, Commercial and Agricultural sectors
- Cross-sectoral options (boiler, CHP, motor, fan, light)
- Renewables
MITIGATIONS OPTIONS – I

Transport Sector
• Modal shift from (i) road to railway and (ii) road to waterway

Agriculture Sector
• Solar PV irrigation pumps

Residential Sector
• Metering residential gas supply and Improved gas stoves
• Solar PV lanterns to replace kerosene lamps

Industry Sector (both public and private sector industries)
• New Urea fertilizer plants
• Sugar mills (cogeneration plant efficiency improvement)
• Steel re-rolling mills efficiency improvement
• Brick making – Higher efficiency kilns
• Industrial cogeneration for captive generators
• Boiler efficiency improvement
MITIGATIONS OPTIONS – II

Commercial Sector
• Solar reflective glass for façades and windows
• Use of hollow bricks as partition walls

Energy Sector (Electricity)
• CCGT to replace old Steam Turbine (ST) plants
• Electricity distribution loss reduction
• Supercritical boilers for coal fired power plants

Cross Sectoral Options
• Efficient fans
• Efficient lighting (T8 replaced by T5 fluorescent tube-lights)

Biomass Options
• Efficiency improvement of parboiling
• Biogas plants
Rail Transport

- A passenger-kilometer is 2-3 times more efficient than buses
- A freight-kilometer is 5-6 times more efficient than trucks
- Modal shift by expanding and upgrading service
- Share of rail transport has fallen dramatically since 1980
- Road transport is cheaper overall and more convenient
- Cannot withstand competition from road transport
- Government very keen, but lacks funding to promote it
Water Transport

- Most efficient mode of transport in terms of energy use; more than even railway

- Passenger-kilometer is 3-4 times and freight-kilometer is 8-10 times more efficient

- Expand and upgrade service for modal shift

- Maintain waterways and ensure security

- Share has fallen since 1980
- Neglected service and problems of river navigability
- Dredging of waterways critically needed
STEAM THERMAL

Baseload Power Plants of BPDB (public)

Data for 2009-10

Age in Years

0 5 10 15 20 25 30 35 40 45

Rauzan

Chittagong

Ashuganj

Ghorasal (I)

Ghorasal (II)

Ghorasal (III)

Siddirganj
Average Efficiency = 31.5%
Electricity Generation

Electricity Generation: Type of Power Plant

- Steam Turbine: 51%
- Combined Cycle: 23%
- Gas Turbine: 17%
- Diesel: 5%
- Hydro: 4%

Year: 2009-10

CCGT to replace STEAM

STEAM Rankine Cycle
ELECTRICITY SUPPLY

- CCGT to replace steam thermal plants (minimum efficiency of CCGT is 52%)

- Supercritical and Ultra-supercritical boilers for coal-fired power plants (4-8% efficiency improvement possible)

- T&D infrastructure up-grading and rehabilitation (study shows high potential; up to 10% loss reduction in certain urban/rural feeders)
Captive Power Generation

• Because of electricity shortage and unreliable power supply, gas utilities started allowing captive power generation about 12 years back

• 1500+ MW gas-based captive generation exists

• 25% of the gas for power is consumed by this sub-sector

• Plant efficiencies vary from 28% to 42% (average = 35%)

• Waste heat is mostly not utilized

• Ideal opportunity for cogeneration
COGENERATION

A waste-heat boiler can recover a good portion of the wasted heat to produce steam.

This will replace the existing boiler thus saving the natural gas used to make steam.

If the industry does not require steam, then absorption refrigeration can be used for air-conditioning or making ice.

Otherwise, the steam can be sold to neighboring industries.
Urea Fertilizer: Four plants (NGFF, PUFF, UFFL, ZFCL) consume for 1 ton of urea more than 40 Mcf of natural gas, compared to 23 Mcf and 30 Mcf by KAFCO and JFCL respectively.
Cogeneration in Sugar Mills

• There are 15 medium sized sugar mills owned by BSFIC.

• Most of these mills are more than 40 years old, and use very low pressure boilers for electricity generation.

• State-of-the-art bagasse boilers are operating at 82 bar, whereas boilers under BSFIC are operating at 11 bar.

• Each mill can export surplus electricity between 3-4 MW to the grid. A feed-in tariff appropriate for renewable energy is needed to promote this option.
Private Industries: Brick Kilns

- 5000+ Fixed Chimney Kilns (FCK) consume 2-3 million Tons of coal - Highly polluting and energy inefficient

- FCK – Very crude furnace; dugout area in open field

- Smalltime entrepreneurs run the industry

- Government has taken many measures to improve the present situation both in terms of energy consumption and environmental pollution
- GEF project in 2005-2008; UNDP, WB and GTZ have facilitated
- World Bank pilot project for improvement of FCK
- CDM project using Hybrid Hoffman Kiln have been registered
- World Bank CASE project is ongoing to improve situation
Fixed Chimney Kiln (FCK)

VSBK: 40-50% more efficient than FCK

HOFFMAN KILN – Coal Fired: 25-35% more efficient than FCK
Scrap Steel Mills + Re-rolling Mills

- Energy component more than 25% of product cost
- Crude Operation and Inefficient Induction Furnaces
- Plant shuts down during peak hours (5 – 11 pm). Furnaces undergo cyclic cooling and heating
- Load shedding causes significant losses. Scrap melting and ingot re-rolling not synchronized
- Re-rolling: Bad insulation; no heat recovery and inefficient burners
- SEC varies from 25 to 75 m³/ton for modern to traditional re-rolling mills
Demand Side Management

- Metering of domestic gas connections
- Efficient ceiling fans
- Improved gas cookstoves
- Efficient building: Solar Reflective Glass
Cookstoves (old and new type)

Solar Reflective Glass could have been used

Ceiling Fan

Metering Domestic Gas Connection
Huge tendency to build commercial building with glass façades

Even though all commercial building are air-conditioned not enough attention being paid to lessen air-conditioning load

Several measures exist to lessen cooling load in commercial buildings

One such measure is Solar Reflective Glass
Solid bricks and alternatives

Hollow bricks - less clay, less coal

Hollow bricks

Cement Blocks
BOILERS

• According to the Chief Inspector of Boilers (CIB) there are more than 5000 registered boilers in Bangladesh.

• Based on preliminary assessment, the CIB believes many boilers are operating in the region of 70% efficiency.

• The boilers that are in the most neglected condition are in the Textile Dyeing Sector. Also, many of the Garments sector boilers are not in a good shape.

• The most prospective size range for intervention in boiler efficiency improvement is the 1-5 t/h. More than 50% of the boilers are in this size.

• Boiler efficiency should be above 85%
MOTORS

- Propensity to purchase the cheapest in the market
- Widespread re-winding of burnt out motors practiced
- Motors kept running unnecessarily
- Efficient drives/Intelligent Motor Controllers not used
Renewables: Biomass efficiency improvement

- Improved Cook Stoves (ICS) and Improved Rice Parboiling Systems are two excellent options.
- These can reduce biomass consumption by up to 50%, and also reduce environmental pollution.
- Up to February, 2012, more than 400,000 ICS have been installed. Grameen Shakti alone has installed more than 150,000. **POA CDM project registered**
- There are 50,000 Rice Parboiling units (GIZ Data).
- Biomass thus saved can be utilized in biomass gasification plants (ongoing GIZ pilot project).
Improved Cook Stoves (ICS) can easily achieve a thermal efficiency of 20%

If the saved biomass is Non Renewable Biomass, CDM can be used to promote ICS
Efficiency Improvement of Paddy PARBOILERS

Estimates indicate that 2-3 million tons can be saved through the use of efficient parboilers
More than 350,000 tons of kerosene used annually for lighting purpose

Solar PV lanterns are high quality replacement for kerosene lamps (KUPI)

RE Practices in Bangladesh - Solar PV Technologies

Solar Lantern Programme for Rural Poor Households in Bangladesh (UNDP supported)

DNA has given approval for a PIN for a Solar PV Lantern CDM project
Agricultural: PV Irrigation

- There are more than 0.5 million irrigation pumps of all types in Bangladesh (40% electric; 60% diesel)

- Seasonal demand of 1500 MW from January to April. Solar irrigation can alleviate the problem significantly as well as save fossil fuel

- REB project to install 20 solar PV pumps as a pilot

- Government is very keen on this idea, and is actively looking for bilateral and multilateral funding
<table>
<thead>
<tr>
<th></th>
<th>Diesel-Pump</th>
<th>Solar-Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price:</td>
<td>Tk 70,000</td>
<td>Tk 6 lac</td>
</tr>
<tr>
<td>Diesel:</td>
<td>Tk 80000/yr</td>
<td>Tk 8000/yr</td>
</tr>
<tr>
<td>Life:</td>
<td>10 years</td>
<td>20 years</td>
</tr>
</tbody>
</table>
Efficiency of traditional stoves is 8-10%.

Improved Cook Stoves (ICS) can easily achieve a thermal efficiency of 20%.

If the saved biomass is Non Renewable Biomass, CDM can be used to promote ICS.
Biogas can replace LPG. Biogas digester. Biogas can replace NRB (Non Renewable Biomass). Deforestation.
Electricity from Poultry waste

Several projects are underway:

1. GIZ is working with 20 medium to large units

2. Grameen Shakti considering electricity option but presently only developing biogas plants for cooking

3. Local Government Engineering Division (LGED), GoB

4. Owner Driven: at least two large poultry farms have installed biogas based electricity generation
Reforestation of Degraded Forests and Afforestation can be REDD+ Projects

Social Forestry - Lining Roadside
Biogas can Replace NRB (Non Renewable Biomass)

Deforestation
Mitigation Projects with Adaptation Co-benefits can give **GREEN JOBS**

- **Household waste composting** – arrest land degradation

- **Solar/wind water pumping** – alleviate drought effects

- **Organically grown cash crops** – alleviate soil degradation
Methane generated in landfills is considered to come from anaerobic decomposition of organic biomass.

The collection and combustion of landfill gas can be considered to reduce greenhouse gas emissions by more than 95%.
- **WWR BioFertilizer Bangladesh Limited**

- A joint venture company of World Wide Recycling (WWR), Netherlands and Waste Concern, Bangladesh

- **1st CDM Project in Bangladesh**

Composting Plant financed by Carbon Credit Using Dhaka City’s organic MSW
The figure is the study result of the second national communication (SNC) submitted to meet Bangladesh’s obligation under the UNFCCC.
GHG Reduction Potential of Mitigation Options analyzed under the SNC study
GHG Emissions from the Baseline and Mitigation Scenarios (SNC)
Thank You